Michael Tsapatsis (PI) and Prodromos Daoutidis (co-PI) Drs. Fernando Lima (Presenter) and Bahman Elyassi Department of Chemical Engineering and Materials Science University of Minnesota

**DE-FE0001322 Hydrogen Selective Exfoliated Zeolite Membranes** 

Proposal in response to Funding Opportunity NO. DE-PS26-08NT00699-01

Pre-combustion carbon capture technologies for coal-based gasification plants

**Topic Area 1 – High-Temperature, High-Pressure Membranes** 

#### Hydrogen Selective Membranes in IGCC Plants



Challenges under WGS conditions of IGCC plants

- high temperature and pressure
- presence of impurities (H<sub>2</sub>S)

Bracht et al., **Energy Convers. Mgmt** <u>38</u>, S159-164 (1997)



• with conventional CO<sub>2</sub> removal: 40.5%

With WGS-MR and  $CO_2$  recovery: 42.8% (LHV) based on

- 35 atm feed, 20 atm permeate (15 atm pressure drop)
- 330°C in the feed
- hydrogen/carbon dioxide selectivity = 15
- hydrogen permeability = 0.2 mol/(m<sup>2</sup>.s.bar)

#### Membrane Area Needed: 2,200 m<sup>2</sup> (400MW)

Bracht et al., Energy Convers. Mgmt <u>38</u>, S159-164 (1997)

#### Motivation: Hierarchical Manufacturing of Zeolite Films



Layer by Layer Deposition (JACS <u>132(2)</u>, 448-449 (2010)) 5 layers of MCM-22/surfactant-templated-mesoporous-silica on porous alumina



### Comparison of Ideal Selectivity



The ideal selectivity  $(H_2/CO_2 \text{ and } H_2/N_2)$  increased monotonically with temperature and improved with the number of deposition cycles.

### MCM-22/Silica Membranes for Hydrogen Separations



\*Open symbols : selectivity through  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> discs

UNIVERSITY OF MINNESOTA

## Advantages by Reduction in Flake Thickness



### **Membrane Preparation Procedure**



Purified nanosheets in toluene were filtered through porous alumina supports and then secondary growth was conducted.



Exfoliated ITQ-1 on Alumina Disk

UNIVERSITY OF MINNESOTA

#### Performance of ITQ-1 Membrane



University of Minnesota

# Four layered zeolites (MCM-22, ITQ-1, NU-6(2), RUB-24) with 6-MR perpendicular to the layers were investigated.

## Hydrothermal Stability Setup



乙乙 UNIVERSITY OF MINNESOTA

### Hydrothermal Stability of MCM-22 and ITQ-1

○ Temperatures: 350°C, 600°C

Pressure: 10 bar (95% steam, 5% nitrogen)

Samples were analyzed in 21-day intervals for 84 days

Both MCM-22 and ITQ-1 showed poor steam stability at 600°C.

MCM-22 outperformed its all silica counterpart (ITQ-I) at 350°C. This behavior was related to the lower concentrations of structural defects in MCM-22.

### Hydrothermal Treatment Conditions for RUB-24 and NU-6(2)

○ Temperature: 350°C

- Pressure: I0 bar (35% steam in nitrogen)
- Ouration: 6 months
- Nu-6(2) was structurally stable after 6 months of steaming.



RUB-24 lost its crystallinity after 6 months of steaming.

#### Summary of Stability Analysis & Future Work

- Achievement
  - long-term steam stability of zeolites MCM-22, ITQ-1, NU-6(2), and RUB-24 were investigated
  - NU-6(2) preserved its crystallinity after 6 months of steaming (35% H<sub>2</sub>O, 65% N<sub>2</sub>) at 350°C
- Future Work
  - study of membrane performances at high temperatures
  - hydrothermal stability study of membranes

#### Systems Modeling: Objectives and Approach

- Develop a WGS membrane reactor (MR) model
- Integrate MR model into IGCC system model
- Analyze effect of reactor design and membrane characteristics on integrated plant performance
  - achieve DOE R&D target goal of 90% CO<sub>2</sub> capture <sup>(1),(2)</sup>
  - satisfy stream constraints for  $CO_2$  capture and gas turbine fuel (H<sub>2</sub> rich) <sup>(3)</sup>
  - quantify process efficiency and power generation
- Perform preliminary techno-economic analysis of integrated IGCC-MR process
- Received input from DOE/NETL personnel (John Marano and Jared Ciferno)

(1) Marano, Report to DOE/NETL (2010)

(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)

(3) Lima et al., Ind. Eng. Chem. Res. <u>51</u>, 5480-5489 (2012)

UNIVERSITY OF MINNESOTA

#### MR Modeling Assumptions and Simulation Set Up



#### **IGCC Plant Modeling Assumptions**



- Simplified systems-level model of entire process (ASU, gasifier, turbines, and heat exchangers) in MATLAB
- Assumptions: few basic components, lumped compartments in gasifier/ turbines, static heat exchanger models <sup>(1)</sup>
- Developed model validated using published simulation data <sup>(1)</sup>

(1) Jillson et al., **J. Proc. Cont.** <u>19</u>, 1470-1485 (2009)

UNIVERSITY OF MINNESOTA

#### Integration of MR into IGCC Plant (MATLAB)



- Scale up MR model at steady state
- Integration directly downstream of gasifier <sup>(1),(2)</sup>
- Effect on heat exchangers/turbines
- Perform preliminary technical assessment of IGCC-MR integrated plant

(1) Marano and Ciferno, Energy Procedia <u>1</u>, 361-368 (2009)
(2) Bracht et al., Energy Convers. Mgmt <u>38</u>, S159-164 (1997)

UNIVERSITY OF MINNESOTA

#### Integration of MR into IGCC Plant (MATLAB): Simulation Results



#### IGCC-MR Simulation Results: Changing Membrane Characteristics



| IGCC Performance                                                                  | Value                         | Value                                 | Value                                 |
|-----------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------------------|
| Variable                                                                          | (S <sub>H2/all</sub> = 1000,  | (S <sub>H2/all</sub> = 1000,          | (S <sub>H2/all</sub> = 100,           |
|                                                                                   | <b>Q</b> <sub>H2</sub> = 0.2) | <b>Q</b> <sub>H2</sub> = <b>0.</b> I) | <b>Q</b> <sub>H2</sub> = <b>0.2</b> ) |
| $C_{CO_2} = \frac{\text{carbon captured}}{\text{carbon in feed}} [\%]$            | 98.94                         | 99.55                                 | 89.79                                 |
| $\eta = \frac{\text{power generated}}{\text{HHV energy in coal}} \left[\%\right]$ | 40.83                         | 34.14*                                | 41.15                                 |
| W = power generated [MW]                                                          | 716.78                        | 599.3 I                               | 722.27                                |

(\*)  $P_{H2,P} \le 44 \%$ 

UNIVERSITY OF MINNESOTA

### Integration of MR into IGCC Flowsheet (Aspen)



MR integration into Aspen flowsheet (Ongoing)

- use available baseline IGCC model (MITEI) (1)
- MR model implemented (co-current) in Aspen Custom Modeler
- similar results to MATLAB model obtained
- Perform simulation & techno-economic analysis
  - feasibility of replacing current technology (CO shift followed by physical absorption) for CO<sub>2</sub> capture
  - achieve DOE target goals (CO<sub>2</sub> capture, COE)

(1) Field and Brasington, Ind. Eng. Chem. Res. <u>50</u>, 11306-11312 (2011)

#### Integration of MR into IGCC Flowsheet (Aspen)



- MR integration into Aspen flowsheet (Ongoing)
  - use available baseline IGCC model (MITEI) <sup>(1)</sup>
  - MR model implemented (co-current) in Aspen Custom Modeler
  - similar results to MATLAB model obtained
- Perform simulation & techno-economic analysis
  - feasibility of replacing current technology (CO shift followed by physical absorption) for CO<sub>2</sub> capture
  - achieve DOE target goals (CO<sub>2</sub> capture, COE)

(1) Field and Brasington, Ind. Eng. Chem. Res. <u>50</u>, 11306-11312 (2011)

#### Modeling Conclusions & Future Work

- Conclusions
  - MR model integrated into IGCC process model in MATLAB
  - preliminary technical assessment of IGCC-MR plant performed
  - MR model (co-current) implemented in Aspen
- Future Work
  - develop relationships between membrane parameters and cost
  - carry out IGCC-MR design optimization (MATLAB)
  - develop counter-current MR model (Aspen)
  - adjust MR model to incorporate into Aspen IGCC baseline model <sup>(1)</sup>

(1) Field and Brasington, Ind. Eng. Chem. Res. <u>50</u>, 11306-11312 (2011)